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Abstract

In this paper, an object-oriented and quadrilateral-mesh based solution adaptive algorithm for the simulation of com-
pressible multi-fluid flows is presented. The HLLC scheme (Harten, Lax and van Leer approximate Riemann solver with
the Contact wave restored) is extended to adaptively solve the compressible multi-fluid flows under complex geometry on
unstructured mesh. It is also extended to the second-order of accuracy by using MUSCL extrapolation. The node, edge
and cell are arranged in such an object-oriented manner that each of them inherits from a basic object. A home-made dou-
ble link list is designed to manage these objects so that the inserting of new objects and removing of the existing objects
(nodes, edges and cells) are independent of the number of objects and only of the complexity of O(1). In addition, the cells
with different levels are further stored in different lists. This avoids the recursive calculation of solution of mother (non-
leaf) cells. Thus, high efficiency is obtained due to these features. Besides, as compared to other cell-edge adaptive methods,
the separation of nodes would reduce the memory requirement of redundant nodes, especially in the cases where the level
number is large or the space dimension is three. Five two-dimensional examples are used to examine its performance. These
examples include vortex evolution problem, interface only problem under structured mesh and unstructured mesh, bubble
explosion under the water, bubble-shock interaction, and shock-interface interaction inside the cylindrical vessel. Numer-
ical results indicate that there is no oscillation of pressure and velocity across the interface and it is feasible to apply it to
solve compressible multi-fluid flows with large density ratio (1000) and strong shock wave (the pressure ratio is 10,000)
interaction with the interface.
� 2008 Elsevier Inc. All rights reserved.

Keywords: Adaptive mesh refinement; Compressible multi-fluid; HLLC; Finite volume; Quadrilateral
1. Introduction

The dynamics of compressible multi-fluid flows have many practical applications in engineering, such as
shock-bubble interactions [1,2] and underwater explosions [3]. Due to complexity of these problems such as
steep material interface, high density and pressure gradients that occur in such flows, accurate predictions
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of flow structure of compressible multi-fluid flows pose a major challenge. Thus, it is necessary to apply the
adaptive mesh technique to improve the efficiency and accuracy.

In the past decades, intensive research and efforts have been devoted to the development of adaptive mesh
refinement technique. As a result, a large number of adaptive algorithms have been proposed and can be cat-
egorized as three categories, h-refinement, p-refinement and r-refinement. The basic idea behind adaptive mesh
refinement is to increase the density of cells by adding cells in regions where accurate solution is required. h-
Refinement increases the mesh resolution by adding elements or vertices to the mesh. For the method of p-
refinement, it improves solution by increasing the order of accuracy of the polynomial in each element (or
cell). As compared to the previous two methods, r-refinement [4,5] modifies the mesh density through the
use of node movement and keeps the number of vertices and elements unchanged. Among these three meth-
ods, h-refinement has been widely applied in many areas [6–8].

The popular h-refinement method is the Cartesian grid solver which may be implemented by the nested
hierarchical data structure such as quad-tree in 2D [8,9] and octree in 3D [10]. A more general version is to
use block adaptive Cartesian meshes [6,11,12] organized in a series of rectangular grid patches. The main
drawback of these adaptive Cartesian meshes is their difficulty to be applied to complex geometry. Besides,
all these tree-based Cartesian adaptive approaches encounter the difficulties of vectorization (on vector archi-
tectures) and tree traversal overhead due to the searching of neighboring cells. Another type of h-refinement
method does not use the tree but an unstructured data structure where the connectivity is explicitly stored with
the mesh [13–15]. This unstructured feature makes it be easily extended to complex geometry. Besides, as the
neighboring references are explicitly stored, the calculation time required for computing quantities involving
the neighbors will be lesser than that for the tree-based approach where the recursive tree traverses are
required to search the neighboring connectivity.

Although there are many adaptive mesh methods, their extension and applications to compressible multi-
fluid flows are still rarely conducted, especially for cases with a large density difference and strong shock wave
interaction at the material interface. Recently, Nourgaliev et al. [3] presented the work by combining the ghost
fluid method and the block structured adaptive Cartesian meshes. However, it is not easy to be applied to
problems with complex geometry due to the use of structured meshes. Besides, as reported by the authors,
the coarse-to-fine and fine-to-coarse inter-level transfer operators are very complicated and may violate the
stability of the code. Moreover, the ghost fluid method employs the level set method to track the interface.
The mass or momentum may not be conserved.

Hence, in order to deal with problems with complex geometry, we adopt the unstructured adaptive tech-
nique and the diffuse interface method [2,16] instead of the Cartesian structured mesh and the ghost fluid
method. The well-designed data structure for the objects (node, edge and cell) and memory arrangement of
the object lists contribute to the fact that the adding, deleting of a certain object is only of the order of
O(1) as compared to O(n) of other cell-edge based methods [15,17]. Besides, due to the hierarchy storage of
cell and the separated storage of leaf edges and non-leaf edges in different lists, the edge-based finite volume
solver can be easily applied to the current adaptive mesh solver as compared to the cell-based finite volume
solver [15,17]. Moreover, the separation of node will reduce the memory requirement of redundant nodes,
especially in the cases where the level number is large or the space dimension is three. It will also make the
conversion of conservative variables from cell-centroid to the cell-vertex and the extension of adaptive mesh
method from 2D to 3D easier and more effective. Hence, from the viewpoint of implementation, our adaptive
algorithm is quite simple and efficient.

For the simulation of compressible multi-fluid flows, a well-known difficulty [2,16,18] associated with Euler
solvers in the conservative form is the possible appearance of spurious pressure oscillations at material inter-
faces. Thus, the quasi-conservative form is applied to conquer this problem. Besides, a suitable Godunov-type
scheme for multi-fluid flows should resolve the contact wave properly in order to capture the interfaces. In this
work, Harten, Lax and van Leer approximate Riemann solver with the contact wave restored, called the
HLLC scheme [19–21] is adopted. This method is further extended to the second-order of accuracy by mono-
tonic upwind schemes for conservation laws (MUSCL).

The paper is organized as follows. The finite volume algorithm for compressible multi-fluid flows under
unstructured adaptive mesh is given in Section 2. The data structure and the implementation of the adaptive
method are proposed in Section 2. The model is extensively validated for single fluid vortex evolution problem,
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and bubble explosion case. It is then applied to a bubble shock interaction problem under strong shock waves
(the pressure ratio is 10,000). Accurate results are obtained at high resolution due to the solution adaptive
technique.
2. Methodology

In this section, the governing equations for the compressible multi-fluid flows are described firstly. The
HLLC (Harten, Lax and van Leer approximate Riemann solver with the contact wave restored) scheme is
extended to solve these equations on the unstructured mesh. The scheme is further extended to the second-
order accuracy by MUSCL gradient reconstruction technique and the second-order Runge–Kutta method.
2.1. Governing equations

For each fluid component of compressible multi-fluid flows, the governing equation is the Euler equation,
which is written as
ot

Z
X

U dV þ
Z

S
U �~ndS ¼ 0; ð1Þ
where U is the state vector of conservative variables, and U is flux vector,
U ¼
q

q~u

E

0
B@

1
CA; U ¼

q~u

q~u�~uþ p½I �
ðE þ pÞ~u

0
B@

1
CA: ð2Þ
Here, q is the density, ~u is the velocity, E is the total energy, p is the pressure, and [I] is the identity tensor.
Neglecting viscous, heat transfer and surface tension effects, the velocity and pressure should stay contin-

uous across interfaces. That is,
D~u ¼ ½~u�þ� ¼ 0;Dp ¼ ½p�þ� ¼ 0: ð3Þ

By using Eq. (3) and the analysis which is similar to the one-dimensional analysis by Abgrall et al. [16], we
have the upwind discretization of Eq. (1) across interfaces in multi-dimensional space,
dq

dðq~uÞ
dðqeÞ

0
B@

1
CA ¼

�tunDðqÞ
~udðqÞ

�tunDðqeÞ

0
B@

1
CA; ð4Þ
where d() denotes the time changes ()n+1 � ()n, un ¼~u �~n is the normal velocity at the material interface with
the normal direction~n, and D() denotes the spatial changes. The first two equations are trivial. Thus, the third
equation which is the discretization of the internal energy is the key to keep a non-oscillating pressure and
velocity near interfaces.

If we further suppose that the equation of state for each fluid component is the Stiffened gas equation,
p ¼ ðcðx; tÞ � 1Þqe� cðx; tÞpðx; tÞ; ð5Þ
we can easily prove that the equations below [2] satisfy Eq. (4),
oH
ot
þ~u � ~rH ¼ 0 ð6Þ
with the definition
H ¼
b

h

� �
; b ¼ 1

c� 1
; h ¼ cp

c� 1
: ð7Þ
Here, c and p are the property of the material, b is also used to indicate the interface because each fluid has a
constant b. In conclusion, the governing equations for compressible multi-fluid flows are Eqs. (1) and (6).
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2.2. Numerical methods

In this section, we will show numerical discretization of Eqs. (1) and (6) on the unstructured mesh. Eq. (1)
can be easily discretized at each cell c by the finite volume method as
U nþ1
c ¼ Un

c �
Dt
Ac

Resc ð8Þ
with the residue defined as
Resc ¼
X

f

UfðUL;U R;~nÞ � Dlf : ð9Þ
Here, Ac is the area of the cell c, Uf is the numerical flux at the edge f of the cell c; the variables U L;UR;~n, and
Dlf denote the left state, right state, normal direction and the length of the edge f.

From Eq. (3), it is seen that a suitable numerical scheme should be the one that could well resolve the con-
tact wave. Hence, the Harten, Lax and van Leer approximate Riemann solver with the contact wave restored
(HLLC) scheme [19,20] is adopted in this paper. It is known that this scheme has a good resolution of shocks,
contact waves and the feature of preservation of the positivity of density and internal energy. The good res-
olution of contact waves makes it very suitable for multi-fluid problems. Similar to one-dimensional HLLC
descriptions [21], the numerical flux on multi-dimensional unstructured mesh can be expressed as
Uf ¼ UHLLCð~U L; ~UR;~nÞ ¼ U�L 0 6 sm

U�R sm 6 0

(
ð10Þ
with
U�L ¼ UðUL;~nÞ þ sLðU �L � ULÞ; ð11Þ
U�R ¼ UðUR;~nÞ þ sRðU �R � U RÞ; ð12Þ
where sL and sR are two intermediate signal speeds of HLLC scheme,
sL ¼ minðuL
n � aL; ~q� ~aÞ; ð13Þ

sR ¼ maxðuR
n þ aR; ~qþ ~aÞ: ð14Þ
Here, aL, aR, and ~a are the left sound speed, right sound speed and the average sound speed and ~q is the aver-
age velocity. The two intermediate states U*L and U*R in Eqs. (11), (12) can be written as this form in 2D,
U �k ¼ ðsk � uk
nÞ
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with the signal speed of the contact wave,
sm ¼
qRuR

n ðsR � uR
n Þ � qLuL

n ðsL � uL
n Þ þ pL � pR

qRðsR � uR
n Þ � qLðsL � uL

n Þ
: ð16Þ
Most of schemes [2,16] used for numerical discretization of Eq. (6) are only suitable for structured mesh. For
the case of unstructured mesh, an effective way for numerical discretization of Eq. (6) is to rewrite it to the
following form [21,22]:
oH
ot
þ ~r � K�H ~r �~u ¼ 0; ð17Þ
where the numerical flux is,
K ¼ H~u: ð18Þ
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Eq. (17) can be discretized as
Hnþ1
c ¼ Hn

c �
Dt
Ac

X
f

Kf � Dlf �Hn
c

X
f

qf � Dlf

 !
; ð19Þ
where qf is the velocity at the edge f, and the conservative part of flux Kf is evaluated in a similar way by,
Kf ¼ KHLLC
f ðHL;HR;~nÞ ¼ K�Lf 0 6 sm

K�Rf sm 6 0

(
ð20Þ
with
K�Lf ¼ KðHL;~nÞ þ sLðH�L �HLÞ; ð21Þ
K�Rf ¼ KðHR;~nÞ þ sRðH�R �HRÞ; ð22Þ
H�L ¼ ðsL � uL

n Þ=ðsL � smÞHR; ð23Þ
H�R ¼ ðsR � uR

n Þ=ðsR � smÞHR: ð24Þ
The scalar normal velocity at the edge f can be computed in a consistent HLLC way by,
qf ¼
uL

n þ sL½ðsL � uL
n Þ=ðsL � smÞ � 1�; 0 6 sm

uR
n þ sR½ðsR � uR

n Þ=ðsR � smÞ � 1�; 0 > sm

(
: ð25Þ
It should be indicated that the above equations have no requirement of mesh structure. Thus, they can be well
applied on the unstructured mesh.
2.3. Second-order approximation in space and time

The scheme described in the above section is only the first-order if the left and right state of an edge is sim-
ply set as the state at the left cell’s center and the state at the right cell’s center respectively. As we know, the
first-order numerical schemes are highly dissipative and less accurate. Besides, higher order discretization in
time may broaden the stable CFL range [15]. So, in this section, we will discuss the second-order discretization
in both space and time.

To increase the solution accuracy in space, the MUSCL-type (Monotonised Upstream centered scheme for
conservation laws) gradient reconstruction scheme [23] is employed. The left and right states are constructed
from extrapolated values from cell centers to cell interfaces and then used to construct fluxes. However, gra-
dients calculated may be inappropriate if they are based on the information across flow discontinuities, such as
shock and contact waves. This may lead to catastrophic destabilization of the solution. To make the solution
be monotonic, the slope limiters are enforced in the extrapolation,
W L
oX ¼ W L þ

1

2
wð2 ~rW L � d~rL � DW ;DW Þ; ð26Þ

W R
oX ¼ W R �

1

2
wðDW ; 2 ~rW R � d~rR � DW Þ; ð27Þ

DW ¼ W R � W L; ð28Þ
where W is the vector of the primitive variables, d~r is the distance vector between the cell center and the edge
center, and w(a, b) is a slope limiter. There are several choices for the slope limiter. In the present work, a
minmod limiter is used since numerical experiments showed that the use of this limiter can produce more sta-
ble results. The minmod limiter is defined as
wða; bÞ ¼ signðaÞ þ signðbÞ
2

minðjaj; jbjÞ: ð29Þ
The minmod limiter captures non-oscillatory gradient information by taking the minimum modulus of the
face-centered gradients and applying it to the cell centre. In other words, if any two gradients are of different
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signs, the cell-centered gradient is set to zero. Otherwise, the gradient with the minimum absolute value is
used.

The gradient of a primitive variable g of cell c in Eq. (27) is calculated by the weighted least square method.
That is,
~rg ¼

P
i

a2
i DxiDxi

P
i

a2
i DxiDyiP

i
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i DxiDyi
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i

a2
i DyiDyi

2
64

3
75
�1 P

i
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i DxiDgiP
i

a2
i DyiDgi

0
B@

1
CA; ð30Þ
where Dgi is the difference between the primitive variable w of the current cell c and that of the neighboring cell
i, Dxi, Dyi are the differences of coordinates in x and y direction, andai is the correspondent weight coefficient,
Dxi ¼ xi � xc; ð31Þ
Dyi ¼ yi � xc; ð32Þ
Dgi ¼ wi � wc; ð33Þ

ai ¼
1

sqrt½ðxi � xcÞ2 þ ðyi � ycÞ
2�
: ð34Þ
To increase the accuracy in time, Eq. (8) can be replaced by using the second-order TVD Runge–Kutta
scheme,
U ð�Þc ¼ U n
c �

Dt
Ac

ResðU n
cÞ; ð35Þ

U nþ1
c ¼ 1

2
Un

c þ
1

2
U ð�Þc �

Dt
2Ac

ResðU ð�Þc Þ: ð36Þ
3. Object-oriented adaptive method on unstructured mesh

The adaptive grid generator developed in this work belongs to the unstructured adaptive grid family which
does not employ tree-like data structure. Instead, all of the connectivity information that is needed by each
quadrilateral cell is explicitly stored. In the present work, the mesh refinement process is made by the
object-oriented programming written in C++. As compared to procedural programming techniques such as
FORTRAN, the object-oriented programming is a type of programming that encapsulates not only the data
type of a data structure, but also the types of operations (functions). Besides, the data can be inherited and the
operations can be redefined by the derived classes. These features help to design a good data structure which
helps to reduce the memory and improve the efficiency. In the following, the memory arrangement, object-ori-
ented cell-edge-node data structure, local refinement, local coarsening and the adaptive edge-based finite vol-
ume procedure are described.
3.1. Memory arrangement

As compared to the structured mesh generation, the adaptive mesh generation has no structured indices.
That is, the indices of an object are usually stored in a one-dimensional container such as one-dimensional
array. Thus, the memory arrangement is very important and critical for most of the adaptive techniques.
One may choose the array with fixed size of memory by using FORTRAN language. For example, in the
paper of Sun and Takayama [14], one part of the array with constant size is used to store leaf cells (which
have no sub-cells) and the other part is used to store the father (non-leaf) cells (which have sub-cells). As a
result, it limits the maximum number of cells, edges and the level of the refined mesh. What is more, the adding
or removing of an object, and the allocating of the new object index needs to search from the beginning to the
end of the array. This will reduce the efficiency of the calculation. In order to obtain a flexible memory
arrangement, one may choose the vector or List containers of C++ language. However, these containers
included in the standard template library (STL) of C++ language have a memory overhead that is associated
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with the excessive pointers employed by the containers themselves. Besides, the vector container can only add
or delete an object from the rear or the head. In the standard List, the new object is added to the list as the data
part of the list item which also consists of two pointers that point to previous and next objects. Thus, the stan-
dard List container has a poor performance in deleting an object. For example, to delete an object, it needs to
search from the first one to the last one in the list until the pointer to the object is found. That is, the com-
plexity of deleting an object in List container is O(n) where n is the number of the items in the list.

Thanks to object-oriented feature of the C++ language, we designed a double linked list to improve the
efficiency of the deleting procedure of List. In this new list which is called TList herein, we replace the list item
by a basic object data structure TObject. That is, the new list does not store the object but a manger to set the
previous and next pointer of an object. Thus, the basic member of the data structure TObject consists of the
previous and next pointer to the other objects (list items). As a result, the adding or removing an object in the
list is equivalent to set the previous pointer (or index) and the next pointer (or index) to be the last object of the
list and the next object of the current object. The searching of the object is not needed. Hence, the complexity
of the removing operator is independent of the number of items in the list and only the order of O(1) as com-
pared to O(n) of the standard list. Besides, the list stores the pointer (indices) of the objects directly. Thus, any
object can be directly accessed by the pointer.

3.2. Cell-edge-node object-oriented data structure

The cell-edge data structure is employed in most of the unstructured adaptive technologies [13–15,24]. That
is, there is no independent data-structure of the node information. Thus, redundant node information [13,24]
may be stored. For example, information of sixteen new nodes is stored if you refine a cell to four sub-cells in
two-dimensional cases. In fact, the maximum numbers of nodes which are required to be added are five and
may be only one in some cases. This is a serious issue when the level is very high, and is even worse in three-
dimensional cases where 64 (8 � 8) new nodes are added for each refinement of a cell. Besides, the overlapping
and redundant information of the node in cell-edge structure results in that the transfer of the values from cell-
center to cell-node is difficult. Thus, it is necessary to use the independent variables to store the geometric
parameters of the node which is denoted as TNode (as shown in Fig. 1) in our solver.

For the edge, one may decompose it into two half edges with opposite orientations as shown in computa-
tional geometry algorithms library (CGAL) [25]. This way would need a large amount of memory. In order to
reduce the memory, we can only store one directional edge [17] and the two opposite edges of the cell have the
same direction. Hence, the two neighboring cells can share the same directional edge. Like other unstructured
method, the edge also stores the pointers to the two neighboring cells. Since we can easily obtain the neigh-
boring cells by visiting the four edges, we can access the node easily. Thus, the current edge structure (TEdge)
does not store the pointer (or indices) of nodes as done by Sun [17]. This will reduce the unnecessary storage of
the pointer (or indices). Besides, it is clear that this structure of TEdge is suitable for the edge-based finite
TCell* neighborCell[2];
TEdge*subEdges[2];
Double nx,ny,length; 
int boundType; 

TEdge

TNode* pts[4]; 
TEdge* edges[4]; 
Double Solution0[6];
Double Solution1[6]; 
Double area; 
Int level; 

TCell

Double x,y; 

TNode

TObject *next; 
TObject *prev; 

TObject 

Fig. 1. Data structure of node, edge and cell.
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volume solver. The pointer (or indices) to the two sub-edges is also included in edge data structure TEdge.
Thus, the adding or deleting node does not need to access the neighboring cells. In order to identify the bound-
ary type, the information of boundary type is also stored.

Since the cell-centered finite volume method is used, all variables at the cell centroid are stored in the data
structure TCell. Like the method of Sun [14,17], the pointers (or indices) to the four edges and nodes are also
stored by a fixed order. Thus, there is no need to store the pointers (or indices) of the four child cells as they
can be accessed by using the sub-edges of the four edges. To extend the solver to the second-order of accuracy,
the gradients of primitive variables are also calculated and stored. Besides, in order to implement the TVD
Runge–Kutta time integration, the state variables of the previous time step are also stored. In summary, TCell
consists of the state variables, previous state variables and the gradient of the primitive variables as shown in
Fig. 2.

Finally, a data structure which is called TMesh is used to store all the objects of node, edge, and cell.
Besides, the TList is used as a memory arrangement for all these objects. To improve the efficiency, the edges
are further organized into two separated lists which are called LeafEdgeList, and MotherEdgeList respectively.
For the methods such as quad-tree or octree based adaptive methods [9], and Cartesian adaptive methods
[15,24], cells of the different levels are not stored in different lists. Thus, in order to satisfy the conservation
law, the calculation of the solution of the mother cell must be recursively calculated by the summated results
of the solution of each child cells. However, the recursive procedure cannot be vectorlizated. So, in order to
avoid the recursive calculation, the cells in our methods are separately stored in different lists according to
their levels. Thus, the solution can be obtained in a level by level manner so that the cells of high level are
calculated after the cells of low level. This makes our algorithm very efficient and suitable for vectorization.
Moreover, for those methods [17,15] where the information of leaf cells and non-leaf cells are stored in two
different lists, the cells need to frequently move from one list to the other list during the process of refinement
and coarsening. In contrast, the current method does not need to do so. This shows that our method also
improves the efficiency especially when the finest resolution level is large.

In order to develop an edge-based solution adaptive solver, the edges are arranged in a different way from
that of cells. That is, the edges are arranged in two different separated lists: a list which is used to store the leaf
edges and a list which is used to store mother edges. Therefore, the edge-based solver can be applied only to
the leaf edges. The numerical fluxes of the mother edges are not calculated. Besides, these numerical fluxes of
the leaf edges are not stored and only used to update the residues of the left and right cells. As compared to the
cell-based methods [14,17,15] which store the fluxes of the edges, the present method that store the residues at
the cells will reduce the memory requirement since the number of edges is approximately two times of that of
cells [14].

3.3. Local refinement

In order to determine which cell is to be refined, the refinement criterion is required. In this paper, it is cho-
sen the same as that of Sun and Takayama [14]. That is, the error indicator is the maximum of the second-
order Taylor truncation error over the first-order Taylor truncation error of density of each edge,
Refine

Coarsen

Fig. 2. Example of refinement and coarsening procedure.



H.W. Zheng et al. / Journal of Computational Physics 227 (2008) 6895–6921 6903
eT ¼ maxf

jðrlnqÞC � ðrlnqÞLj
afqC=dlþ jðrlnqÞLj

;
jðrlnqÞC � ðrlnqÞRj
afqC=dlþ jðrlnqÞRj

� �
f

; ð37Þ
where dl is the length of the edge and the gradients are
ðrlnqÞC ¼
qR � qL

j~rR �~rLj
; ðrlnqÞL;R ¼ ðrqÞL;R �

~rR �~rL

j~rR �~rLj
: ð38Þ
If the value of error detector in a certain cell is greater than the pre-defined refining threshold eR, then the cell
is marked for refinement; otherwise, it is marked for coarsening. The default value of sensitivity af is 0.03. It
has been shown that this error indicator can detect most of discontinuity such as shock wave and contact dis-
continuity [14].

In the refinement, each cell is divided into four quadrilateral sub-cells. It is clear that only four new cell
objects are created. However, the adding of edges and nodes need to be carefully checked to make sure that
only the necessary edges and nodes are created. To simplify the adaptation procedure, one may check whether
the cell can be refined before the process of refinement. Like other adaptive Cartesian methods, there are only
two constraints for this process. One is that the cell has no children (sub-cells). The other one is that the max-
imum difference of the levels between the current cell and all the neighboring cells cannot be greater than one.
The procedure of refinement is listed as follows:

(1) The first step is to create the new nodes appropriately (Fig. 2). A new node is crated at the centroid of the
cell firstly. If one edge has no sub-edges, a node is created. Otherwise, we just use the existing center node
of edge. All the newly-generated nodes are added to the node list.

(2) The second step is to create the edges appropriately (Fig. 2). Similar to the creation of nodes, the two
sub-edges of each edge are created if the edge has no sub-edges. The new sub-edges are then added to
the leaf edge list. The original edges which have sub-edges must be re-assigned to the non-leaf edge list.

(3) Create four cells and add them to cell list with the corresponding level.
(4) Assign the neighboring cells of each edge.
(5) Assign the neighboring cells of each sub-edge if the edges have sub-edges.
(6) Set the boundary type of each new edge according to their mother edge.
(7) Initialize the solutions and the levels of all new cells.
3.4. Local coarsening

As a reverse process of the refinement, the coarsening process removes the unnecessary cells from the mesh.
This helps to reduce the memory requirement and achieve maximum computational efficiency. Since the clas-
ses of TNode, TEdge and TCell are inherited from the TObject, we can just call the removing function of TList
to delete the object from the memory. Similar to the refinement procedure, we use the error indicator to deter-
mine which cell is to be deleted. Before the process of coarsening, we also need to check whether the marked
cell can be coarsened. There are three constraints for this. The first one is that the cell must have children (sub-
cells). The second one is that the maximum difference of the levels between the current cell and all the neigh-
boring cells cannot be greater than one. The third one is that the value of error detector is smaller than the
coarsening threshold. If all these three constraints are satisfied, then the cell is removed by calling the coars-
ening procedure. In this coarsening process, we also need to change the neighbor cell information of the cell.
This is simply implemented by reassigning the two pointers (indices) of the neighbor cells of the four edges of
the cell. In conclusion, the procedure of coarsening is listed as follows:

(1) The first step is to remove the nodes appropriately (Fig. 2). The node at the centroid of the mother cell is
removed firstly. The center nodes of each edge are removed from the node list if the corresponding edge
has no sub-edges.

(2) The second step is to remove the sub-edges appropriately. The two sub-edges of each edge are removed
from the leaf edge list if the outer neighbor cell has no child cells. The edges of the cell that has no sub-
edges are re-arranged from the non-leaf edge list to the leaf edge list.
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(3) Delete four cells from the cell list of the corresponding level.
(4) Re-assign the neighbor cells of each edge.

3.5. Overall procedure

As stated above, all edges are arranged in a list of leaf edges and a list of non-leaf edges. Thus, the edge-

based adaptive simulation of compressible multi-fluid flows can be easily implemented. The calculation of the
numerical flux of leaf edge only requires the information at the left state and right state of the edge. The flow
variables at the two states are calculated according to Hermit interpolation (functional value and its first-order
derivatives are used) from the cell centers of both sides of the edge. So, there is no need to handle the handing
nodes and no special treatment at the interface between the finer cell and the coarse cell. There is no difference
between the calculation of the numerical flux at the coarse-fine grid interface and that at the fine-fine or coarse-
coarse grid interfaces. The whole procedure for the edge-based adaptive simulation of compressible multi-fluid
flows is summarized below:

(1) Initialize the mesh and solution;
(2) Perform the refinement or coarsening for all cells appropriately:
for (each cell in all cell lists of different levels)
{
if (the error indicator of this cell is larger than the critical refinement threshold)

Perform the local refinement of this cell;
else if (the error indicator of this cell is smaller than the critical coarsening threshold)

Perform the local coarsening of this cell;
}

(3) Calculate the time step;
(4) Perform edge-based flux calculation for each leaf edge (excluding non-leaf edges):
for (each leaf edge in the leaf edge list){
Calculate the numerical flux and update the residues of the left and right cell;
}

(5) Update the solutions of all cells:

for (each cell list from the list of the largest level to the list of the smallest level) {

for (each cell in the current cell list)

Calculate and update the solution of the current cell;

}
(6) If the termination condition is not satisfied, then goes to (2); otherwise, goes to (7)
(7) Output the results.

4. Results and discussion

In order to validate the performance of the present solution adaptive technique for compressible multi-fluid
flows, test cases of two-dimensional vortex evolution, material interface problem, bubble explosion under the
water and shock-interface interaction inside the cylindrical vessel are considered.

4.1. Two-dimensional vortex evolution problem

To investigate the order of accuracy of our solver, we first consider the single fluid vortex evolution problem
by setting both of the parameters of two fluids as c = 1.4, p = 0. This also shows that our solver has the capa-
bility to solve the single compressible flow problems. The problem is solved in the square domain
[0,10] � [0, 10] with periodic boundary conditions. The total time is two seconds. To our experience and
knowledge, the periodic boundary condition is the hardest to be implemented for an adaptive solver.
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The vortex is defined as the isentropic perturbation to the uniform flow. That is, the initial values of the
primitive variables are set as [26],
Table
Numer

Backg

0.5
0.25
0.0125

Averag
q ¼ T 1=ðc�1Þ; u ¼ 1þ du; v ¼ 1þ dv; p ¼ qc; T ¼ 1þ dT ð39Þ

with the perturbation,
ðdu; dvÞ ¼ e
2p

e0:5ð1�r2Þð�ðy � 5Þ; ðx� 5ÞÞ; ð40Þ

dT ¼ �ðc� 1Þe2

8cp2
eð1�r2Þ; e ¼ 5; ð41Þ
where r is the distance,
r2 ¼ ðx� 5Þ2 þ ðy � 5Þ2: ð42Þ

As stated by Sun and Takayama [27], a suitable error measure is critical to the calculation of order of accuracy
for the adaptive method. The traditional norm calculation cannot be applied to the adaptive method due to
the lack of including the effects of error localization. For the purpose of evaluating the convergence rate of
present adaptive algorithm, the norm for level k is chosen as,
ðL1Þk ¼ ku� uexk1 ¼ maxi2Nkfjui � uex
i jg; ð43Þ
where Nk denotes the total number of cells of level k. That is, the error is measured at the same resolution level.
Thus, if the finest resolution level is 2, there will be three L1 with respect to the three resolution levels
correspondingly.

To study the convergence rate of the adaptive scheme, three background meshes are employed, i.e. 21 � 21,
41 � 41 and 81 � 81. Since the solution is smooth in the whole field, the limiter is not used in this case. The
exact solution is a smooth vortex movement moving along the direction of the diagonal direction of the Carte-
sian mesh lines. Based on this analytical solution, the corresponding numerical results in terms of L1 norm of
error are quantitatively shown in Table 1. It can be clearly observed that the solution is converging to the exact
solution with approximately the second-order of accuracy in L1 norms for all the levels. This indicates the
second-order convergence of our adaptive method. To further investigate the efficiency of current adaptive
method, four cases with adaptive mesh and two cases with fixed mesh are performed on the PC with 1 GB
RAM and 2.99 GHz CPU. The computational times and the numbers of objects are presented in Table 2.
From this table, it is easily observed that, to achieve the same accurate solution in terms of finest L1 norm
of error, the numbers of nodes, edges and cells required by the adaptive method are less than those of fixed
mesh method. Besides, it can be seen that the time needed by present adaptive method is less than one-third (or
even one-fifth) of the time needed by the fixed mesh. This shows that the adaptive algorithm is efficient and
accurate.

4.2. Interface only problem

In this section, the free of oscillation feature and preservation of the sharp material interface of our adap-
tive algorithm is investigated. Initially, one fluid with a circular shape surrounded by another fluid is put at the
position (0.25 m, 0.25 m) of the domain [0,1] � [0, 1]m2. The radius of the circular interface is r0 = 0.16 m. The
1
ical results of the unsteady vortex evolution problem

round mesh spacing L1 norm of error

Level 0 Level 1 Level 2

0.017 0.0072 0.0051
0.0046 0.0017 0.0011
0.0011 0.00051 0.00033

e convergence rate 1.97 1.91 1.97



Table 2
Efficiency comparison between adaptive grid and uniform grid

Finest
level

Background
mesh

Final number of
nodes

Final number of
edges

Final number of
cells

Finest L1 norm of
error

CPU time
(s)

Adaptive
grid

1 41 � 41 2722 6028 2932 0.0046 2
81 � 81 9940 21,920 10,804 0.00098 18

2 23 � 23 2235 5506 2648 0.0043 2
46 � 46 7540 18,516 9081 0.00091 16

Uniform grid 81 � 81 6561 12,960 6400 0.0046 6
161 � 161 25,921 51,520 25,600 0.00092 90
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periodic boundary condition is employed at all boundaries. The initial mesh is adaptively generated by a 6 � 6
background mesh (level 0) with the finest resolution level as 6. The initial values of the primitive variables for
the two fluids are given by [2],
q1 ¼ 0:1 kg=m3; u1 ¼ 1 m=s; p1 ¼ 1 Pa; c1 ¼ 1:4; p1 ¼ 0 Pa; for r < r0; ð44Þ
q2 ¼ 1 kg=m3; u2 ¼ 1 m=s; p2 ¼ 1 Pa; c2 ¼ 1:6; p2 ¼ 0 Pa; for r > r0: ð45Þ
This initial condition indicates that there are no shock and other perturbation in the flow field. As a result, the
inner fluid with circular shape should move with the constant velocity along the diagonal direction. Thus, it is
also called material interface only problem. As reported by many researchers [2,16], it is a good test case to
verify the solver and see whether there is no oscillation of pressure and velocity across the interface.

We plot the interface position at t = 0 s and t = 0.36 s as shown in Fig. 3. As stated above, the circular
interface moves with a constant velocity. Hence, there is an analytical solution for the interface position. From
Fig. 3, it can be easily observed that the calculated position and shape of the interface at t = 0.36 s agrees well
with the predicted one. To see it more clearly, the surface plot of the density is also shown in Fig. 4. This figure
clearly shows that the density around the interface is so sharp that it is nearly the same as the initial one. We
also perform the simulation with the first-order of accuracy and the results are shown in Fig. 5. It is clear that
the profile is not as sharp as that of the second-order scheme. This indicates that the adaptive algorithm with
Fig. 3. Interface position of different time (t = 0 s and t = 0.36 s).



Fig. 4. Comparison of the surface density plot of interface only problem between time t = 0.0 s and t = 0.36 s by using second-order
MUSCL scheme (max level is 6).

Fig. 5. Comparison of the surface density plot of interface only problem between time t = 0.0 s and t = 0.36 s by using first-order scheme
(max level is 6).
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the second-order of accuracy gives a better interface tracking. Besides, the computed pressure and velocity do
not oscillate around the interface as shown in Figs. 6 and 7. This confirms the claim of oscillation-free of our
adaptive method. The total nodes, leaf cells, and cells are 6747, 6316 and 8413, respectively, at t = 0.36 s. This



Fig. 6. Surface pressure plot of interface only problem at time t = 0.36 s (max level is 6).

Fig. 7. Surface velocity plot of interface only problem at time t = 0.36 s (max level is 6).
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cell number is smaller than that of structured mesh solver [2] with mesh size of 100 � 100. It is indicated that
the surface plot of density by Shyue [2] is so diffused that it is similar to our result with the first order of accu-
racy (Fig. 5). This example does show that the adaptive algorithm is very accurate.

We can further test whether the oscillation-free is also valid on the unstructured mesh (with the finest res-
olution level 7) as shown in Fig. 8. The initial conditions are the same as those in Eqs. (44) and (45). In con-



Fig. 8. Unstructured adaptive mesh for interface only problem.
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trast, the extrapolation boundary conditions are set at all four boundaries. Similarly, we can draw the surface
plot of the density at t = 0 s and at t = 0.36 s as shown in Fig. 9. The surface plot of pressure and velocity in
Figs. 10 and 11 has no oscillation. These show that the algorithm is also valid on the unstructured
mesh.
Fig. 9. Comparisons of the surface density plot of interface only problem between time t = 0.0 s and t = 0.36 s by using second-order
MUSCL scheme (max level is 7).



Fig. 10. Surface pressure plot of interface only problem at time t = 0.36 s (max level is 7).

Fig. 11. Surface velocity plot of interface only problem at time t = 0.36 s (max level is 7).
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4.3. Bubble explosion under the water

In this section, the efficiency and memory reduction of our method are investigated. Initially, one circular
fluid (gas) with the radius r0 = 0.2 m surrounded by another fluid is put at the center of the domain
[0,1] � [0, 1]m2 [2]. The periodical boundary conditions are employed at the top and bottom boundary, while
the extrapolation boundary conditions are employed at the left and right boundary. The two fluids are initially
at rest and there is a jump on the density, the pressure and the material parameters (c, p) across the interface,



Fig. 12. Density contour for bubble explosion under water.
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q1 ¼ 1:241 kg=m3; u1 ¼ 0 m=s; v1 ¼ 0 m=s; p1 ¼ 2:753 Pa; c1 ¼ 1:4; p1 ¼ 0 Pa; for r < r0;

ð46Þ
q2 ¼ 0:991 kg=m3; u2 ¼ 0 m=s; v1 ¼ 0 m=s; p2 ¼ 3:059� 10�4 Pa c2 ¼ 5:5;

p2 ¼ 1:505 Pa for r > r0: ð47Þ
To evaluate our method, numerical computation is performed on the adaptive mesh generated by a uniform
background mesh (level is 0) of 20 � 20 with the finest resolution level as 4. The solution of this problem is
composed by an outgoing shock wave traveling in the air, an incoming rarefaction wave traveling in the water
and the material interface (contact discontinuity) lying in between these waves (Figs. 13–15). From the obser-
vation of the mesh distributions (Fig. 12), it is clear that the region with the shock wave and rarefaction wave
is well refined and the region with smooth solution is coarsened. That is, our adaptive algorithm can appro-
priately generate the suitable mesh to reflect the important features of the flow. Thus, it is reasonable to expect
Fig. 13. Density and pressure contour for bubble explosion under water.



Fig. 14. Density profile in vertical centerline for the bubble explosion under water.

Fig. 15. Pressure profile in vertical centerline for the bubble explosion under water.
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a favorable return of improved computational efficiency. From the density and pressure profiles along the
center line (Figs. 14 and 15), good agreement was found between the present results and those of [2]. Note
that the results of [2] in Figs. 14 and 15 are obtained from the curves of [2] by using the software of Marisoft
Digitizer. As compared with high resolution wave propagation results on the fixed grid [2] and the front track-
ing algorithm [2], our adaptive algorithm requires much less total number of nodes to achieve an equivalently
accurate solution.

4.4. Bubble-shock interaction

In this section, the bubble shock interaction with a large density ratio (1000) and pressure ratio (10,000)
between the water and gas bubble is investigated. Initially, a left going planar shock wave with Mach number
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of 1.422 traveling in the water and a circular bubble gas with radius of 0.2 m are put at the left side (0.7 m,
0 m) of the shock wave [1,28]. The domain is [0,1.2] � [�0.5, 0.5]m2 and the shock wave is located at
0.95 m. The pre-shock and post-shock fluids are initially at rest and the parameters such as density, velocity,
pressure and the material parameters (c, p) are listed as follows:
q1 ¼ 1000 kg=m3; u1 ¼ 0 m=s; v1 ¼ 0 m=s; p1 ¼ 1� 105 Pa; c1 ¼ 4:4; p1 ¼ 6� 108 Pa; ð48Þ
q3 ¼ 1230 kg=m3; u3 ¼ �432:69 m=s; v3 ¼ 0 m=s; p3 ¼ 109 Pa; c3 ¼ 4:4; p3 ¼ 6� 108 Pa:

ð49Þ
The primitive variables for the bubble are set as,
q2 ¼ 1:2 kg=m3; u2 ¼ 0 m=s; v2 ¼ 0 m=s; p2 ¼ 105 Pa; c2 ¼ 1:4; p2 ¼ 0:0 Pa: ð50Þ

The reflective boundary conditions are employed at the top and bottom boundary, while the extrapolation
boundary conditions are imposed at the left and right boundary. As stated by Shyue [28], this is a challenging
problem due to the large pressure jump across the shock wave and the large ratio of the acoustic impedances
of the liquid to gas.
Fig. 16. Density and beta at t = 0 s.

Fig. 17. Density and beta at t = 0.0001 s.



Fig. 18. Density and beta at t = 0.0002 s.

Fig. 19. Density and beta at t = 0.0003 s.

Fig. 20. Density and beta at t = 0.0004 s.
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To see a clear flow structure, we plot the schlieren figure of density defined by
sc ¼ exp �kc

jrqjc
maxcjjrqjcj

 !
ð51Þ
with
kc ¼
6; if bc < 1

1; otherwise:

�
ð52Þ
The simulation is performed on the adaptive mesh generated by a uniform background mesh (level is 0) of
6 � 5 with the finest resolution level of 6. The results of density (displayed by schlieren figure) and the contour
of b at different time from 0 s to 0.0004 s are plotted in Figs. 16–20. As can be seen in Fig. 16, the shock wave
Fig. 21. Density profile along centerline at y = 0.



6916 H.W. Zheng et al. / Journal of Computational Physics 227 (2008) 6895–6921
first propagates in the water. After the shock wave hits the bubble, a circular wave is generated and reflected
from the interface (Fig. 17). Then the left-going shock wave continues to propagate through the bubble and
the reflected circular wave moves outward as shown in Fig. 18. When the right moving circular wave hits the
upper and lower boundary, the second reflected wave is generated (Fig. 19). The second reflected wave will
interact with other waves to form a complex flow. Two small vortices are found to attach the bubble as shown
in Fig. 20. The density and pressure profiles are plotted in Figs. 21 and 22. Also included in these two figures
are the results of Shyue [28], which are obtained from the curves of [28] by using the software of Marisoft Dig-
itizer. It is clear that our results agree well with those of Shyue [28]. This shows that our algorithm works well
on complex flow field where shock waves, rarefaction wave and material interface are interacted with each
other. From Fig. 23, it can be easily observed that the adaptive mesh can reflect the pattern of density contours
as shown in Figs. 17 and 18. This implies that the current method can effectively capture the discontinuous
flow structure such as shock wave and material interface.
Fig. 22. Pressure profile along centerline at y = 0.



Fig. 23. Adaptive mesh for bubble-shock interaction problem.
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4.5. Shock-interface interaction inside the cylindrical vessel

The final test case is the shock-interface interaction in the cylindrical vessel. The radius and center of the
vessel are respectively 0.8 m and (0 m, 0 m). Initially, two ideal gases, the air and the helium, are separated by a
planer interface. The vessel is then impulsively driven normal to the interface causing a curved shock to form
along the compressive portion of the boundary and a rarefaction to form along the opposing portion of the
boundary. The material interface is located at x = 0 initially, and the air is put at the left side. The parameters
of air are listed as follows:
q1 ¼ 1 kg=m3; u1 ¼ �1 m=s; v1 ¼ 0 m=s; p1 ¼ 1 Pa; c1 ¼ 1:4; p1 ¼ 0 Pa: ð53Þ

The helium is put at the right side with parameters as
q2 ¼ 0:138 kg=m3; u2 ¼ �1 m=s; v2 ¼ 0 m=s; p2 ¼ 1 Pa; c2 ¼ 1:67; p2 ¼ 0 Pa: ð54Þ
Fig. 24. The back ground mesh for cylindrical vessel.
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The background mesh for the simulation is shown in Fig. 24. The reflective boundary conditions are employed
at the boundary. Figs. 25–28 display the adaptive mesh and density contours at different times. The solution of
this problem is composed by a right-going semi-circular shock wave traveling in the air, a left-going rarefac-
tion wave traveling in the helium and the material interface (contact discontinuity) lying in between these
waves. As shown in Fig. 25, the shock wave is initially formed on the left and propagates to the right towards
the material interface and the rarefaction wave moves towards the left when time is 0.25 s. It can be easily
observed that the adaptive mesh is refined locally around these waves and interface. After that, the shock wave
continues to move to right and forms a diverging shock which is bow shape and is clearly captured by the
adaptive mesh as shown in Fig. 26a when time is 0.5 s. It also drives the interface to move towards right as
shown in Fig. 26. The right moving shock wave will reflect back by the fixed vessel. This reflected wave will
Fig. 25. Mesh and density contour at time t = 0.25 s (max level is 5).

Fig. 26. Mesh and density contour at time t = 0.5 s (max level is 5).



Fig. 27. Mesh and density contour at time t = 0.75 s (max level is 5).

Fig. 28. Mesh and density contour at time t = 1 s (max level is 5).
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then travel in the opposite direction (left going), and collide with the interface and move to the air again. The
mesh and density contours at time of 0.75 s are shown in Fig. 27. As the time goes on, the interface starts to
roll up and form the Richtmyer–Meshkov (RM) instability. At the same time, the left-going reflected shock
wave will be focused at the left-hand side of the interface. These phenomena can be clearly seen in Fig. 28.
As RM instability develops, tiny structures will be appeared on the interface. As shown in Fig. 28, these tiny
structures are well captured by our adaptive mesh.

Note that this problem has been previously solved by Banks et al. [29] using the adaptive Cartesian grid
together with overlapping mesh. It was found that our density contours as shown in Figs. 25–28 well reveal
the flow pattern as shown by the Schlieren images of Banks et al. [29]. Fig. 291 further compares the colored
1 For interpretation of color in Fig 29, the reader is referred to the web version of this article.



Fig. 29. Comparison of pressure contour at time t = 1 s.
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pressure contours at time of 1 s between the present results and those of Banks et al. [29]. Although the color
mapping (the mapping between numerical results and the RGB color) may be different between the two works,
the present results agree very well with those of Banks et al. [29].
5. Conclusions

An object-oriented and quadrilateral-mesh based solution adaptive method for two-dimensional compress-
ible multi-fluid flows is proposed in this paper. The approach is able to automatically and efficiently adjust the
local mesh density to reflect the transient behavior of the solution. Due to the well-designed cell-edge-node
data structure and double link list, the inserting and removing of the existing objects (nodes, edges and cells)
are independent of the number of objects and only of the complexity of O(1). The memory requirement is
greatly reduced since the unused objects are freed from the memory. Besides, the HLLC scheme is extended
to solving compressible multi-fluid flows on unstructured mesh. To examine the performance of present adap-
tive algorithm, five examples have been carried out. They are vortex evolution, interface only, bubble explo-
sion under water, bubble shock interaction and shock-interface interaction in the cylindrical vessel cases.
Numerical results show that the second-order convergence has been achieved by the present adaptive method.
They also indicate that there is no oscillation of pressure and velocity across the interface and it is feasible in
solving compressible multi-fluid flows with large density ratio (1000) and strong shock wave (the pressure ratio
is 10,000) interaction with the interface.
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